首页> 外文OA文献 >A Latent Variable Partial Least Squares Path Modeling Approach to Regional Association and Polygenic Effect with Applications to a Human Obesity Study
【2h】

A Latent Variable Partial Least Squares Path Modeling Approach to Regional Association and Polygenic Effect with Applications to a Human Obesity Study

机译:区域关联和多基因效应的潜在变量偏最小二乘路径建模方法及其在人类肥胖研究中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Genetic association studies are now routinely used to identify single nucleotide polymorphisms (SNPs) linked with human diseases or traits through single SNP-single trait tests. Here we introduced partial least squares path modeling (PLSPM) for association between single or multiple SNPs and a latent trait that can involve single or multiple correlated measurement(s). Furthermore, the framework naturally provides estimators of polygenic effect by appropriately weighting trait-attributing alleles. We conducted computer simulations to assess the performance via multiple SNPs and human obesity-related traits as measured by body mass index (BMI), waist and hip circumferences. Our results showed that the associate statistics had type I error rates close to nominal level and were powerful for a range of effect and sample sizes. When applied to 12 candidate regions in data (N = 2,417) from the European Prospective Investigation of Cancer (EPIC)-Norfolk study, a region in FTO was found to have stronger association (rs7204609∼rs9939881 at the first intron P = 4.29×10−7) than single SNP analysis (all with P>10−4) and a latent quantitative phenotype was obtained using a subset sample of EPIC-Norfolk (N = 12,559). We believe our method is appropriate for assessment of regional association and polygenic effect on a single or multiple traits.
机译:现在,遗传关联研究通常用于通过单SNP单性状测试来鉴定与人类疾病或性状相关的单核苷酸多态性(SNP)。在这里,我们介绍了偏最小二乘路径建模(PLSPM),用于在单个或多个SNP与可能涉及单个或多个相关度量的潜在性状之间建立关联。此外,该框架通过适当地加权特征属性等位基因,自然提供了多基因效应的估计量。我们进行了计算机模拟,以评估多种SNP和人体肥胖相关性状的表现,这些体质由体重指数(BMI),腰围和臀围测量。我们的结果表明,辅助统计数据的I型错误率接近标称水平,并且对一系列影响和样本量具有强大的影响力。当将其应用于欧洲前瞻性癌症研究(EPIC)-诺福克研究的数据中的12个候选区域(N = 2,417)时,发现FTO中的一个区域具有更强的关联性(rs7204609〜rs9939881在第一个内含子处P = 4.29×10 -7)比单次SNP分析(所有P> 10-4)和潜在的定量表型使用EPIC-Norfolk的子集样本获得(N = 12,559)。我们认为我们的方法适合评估单个或多个性状的区域关联和多基因效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号